Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation

نویسندگان

  • Tanel Punga
  • Marc Bühler
چکیده

Friedreich ataxia is a degenerative disease caused by deficiency of the protein frataxin (FXN). An intronic expansion of GAA triplets in the FXN-encoding gene, FXN, causes gene silencing and thus reduced FXN protein levels. Although it is widely assumed that GAA repeats block transcription via the assembly of an inaccessible chromatin structure marked by methylated H3K9, direct proof for this is lacking. In this study, we analysed different histone modification patterns along the human FXN gene in FRDA patient-derived lymphoblastoid cell lines. We show that FXN mRNA synthesis, but not turnover rates are affected by an expanded GAA repeat tract. Importantly, rather than preventing transcription initiation, long GAA repeat tracts affect transcription at the elongation step and this can occur independently of H3K9 methylation. Our data demonstrate that finding novel strategies to overcome the transcription elongation problem may develop into promising new treatments for FRDA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long intronic GAA•TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia

Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii)...

متن کامل

Effects of Friedreich's ataxia (GAA)n·(TTC)n repeats on RNA synthesis and stability

Expansions of (GAA)n repeats within the first intron of the frataxin gene reduce its expression, resulting in a hereditary neurodegenerative disorder, Friedreich's ataxia. While it is generally believed that expanded (GAA)n repeats block transcription elongation, fine mechanisms responsible for gene repression are not fully understood. To follow the effects of (GAA)n·(TTC)n repeats on gene expr...

متن کامل

Expanded GAA repeats impair FXN gene expression and reposition the FXN locus to the nuclear lamina in single cells.

Abnormally expanded DNA repeats are associated with several neurodegenerative diseases. In Friedreich's ataxia (FRDA), expanded GAA repeats in intron 1 of the frataxin gene (FXN) reduce FXN mRNA levels in averaged cell samples through a poorly understood mechanism. By visualizing FXN expression and nuclear localization in single cells, we show that GAA-expanded repeats decrease the number of FX...

متن کامل

Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich’s ataxia

Friedreich's ataxia (FRDA) is caused by biallelic expansion of GAA repeats leading to the transcriptional silencing of the frataxin (FXN) gene. The exact molecular mechanism of inhibition of FXN expression is unclear. Herein, we analyze the effects of hyperexpanded GAA repeats on transcription status and chromatin modifications proximal and distal to the GAA repeats. Using chromatin immunopreci...

متن کامل

Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers.

The most common causative mutation of Friedreich ataxia (FRDA) is the unstable hyperexpansion of an intronic GAA triplet repeat that impairs frataxin transcription. Using real time quantitative PCR, we showed that FRDA patients had residual levels of frataxin mRNA ranging between 13% and 30% and that FRDA carriers had about 40% of that of controls. Asymptomatic carriers also showed reduced frat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010